Patient Heterogeneity and the J-Curve Relationship between Time-to-Antibiotics and the Outcomes of Patients Admitted with Bacterial Infection∗
Critical Care Medicine, ISSN: 1530-0293, Vol: 50, Issue: 5, Page: 799-809
2022
- 6Citations
- 25Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations6
- Citation Indexes6
- CrossRef5
- Captures25
- Readers25
- 25
Article Description
OBJECTIVES: Sepsis remains a leading and preventable cause of hospital utilization and mortality in the United States. Despite updated guidelines, the optimal definition of sepsis as well as optimal timing of bundled treatment remain uncertain. Identifying patients with infection who benefit from early treatment is a necessary step for tailored interventions. In this study, we aimed to illustrate clinical predictors of time-to-antibiotics among patients with severe bacterial infection and model the effect of delay on risk-adjusted outcomes across different sepsis definitions. DESIGN: A multicenter retrospective observational study. SETTING: A seven-hospital network including academic tertiary care center. PATIENTS: Eighteen thousand three hundred fifteen patients admitted with severe bacterial illness with or without sepsis by either acute organ dysfunction (AOD) or systemic inflammatory response syndrome positivity. MEASUREMENTS AND MAIN RESULTS: The primary exposure was time to antibiotics. We identified patient predictors of time-to-antibiotics including demographics, chronic diagnoses, vitals, and laboratory results and determined the impact of delay on a composite of inhospital death or length of stay over 10 days. Distribution of time-to-antibiotics was similar across patients with and without sepsis. For all patients, a J-curve relationship between time-to-antibiotics and outcomes was observed, primarily driven by length of stay among patients without AOD. Patient characteristics provided good to excellent prediction of time-to-antibiotics irrespective of the presence of sepsis. Reduced time-to-antibiotics was associated with improved outcomes for all time points beyond 2.5 hours from presentation across sepsis definitions. CONCLUSIONS: Antibiotic timing is a function of patient factors regardless of sepsis criteria. Similarly, we show that early administration of antibiotics is associated with improved outcomes in all patients with severe bacterial illness. Our findings suggest identifying infection is a rate-limiting and actionable step that can improve outcomes in septic and nonseptic patients.
Bibliographic Details
Ovid Technologies (Wolters Kluwer Health)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know