A Nanofiber Sheet Incorporating Vitamin B12 Promotes Nerve Regeneration in a Rat Neurorrhaphy Model
Plastic and Reconstructive Surgery - Global Open, ISSN: 2169-7574, Vol: 7, Issue: 12, Page: E2538-null
2019
- 8Citations
- 16Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations8
- Citation Indexes8
- CrossRef2
- Captures16
- Readers16
- 16
Article Description
Background: Outcomes of peripheral nerve repair after injury are often suboptimal. Therefore, developing biological approaches to augment nerve regeneration is important. In this in vivo study, we tested the hypothesis that augmentation with an electrospun nanofiber sheet incorporating methylcobalamin (MeCbl) would be effective for regeneration after peripheral nerve transection and repair. Methods: Rats were divided into 3 groups that either underwent sciatic nerve repair with or without the MeCbl sheet, or a sham operation. At 4 and/or 8 weeks after the operation, sensory and motor functional recovery, along with histological findings, were compared among the groups using the toe-spreading test, mechanical and thermal algesimetry tests, tibialis anterior muscle weight measurements, electrophysiological analyses, which included nerve conduction velocity (NCV), compound muscle action potential (CMAP), and terminal latency (TL), and histological analyses involving the myelinated axon ratio, axon diameter, and total axon number. Results: Compared with the repair group without the MeCbl sheet, the repair group with the MeCbl sheet showed significant recovery in terms of tibialis anterior muscle weight, NCV and CMAP, and also tended to improve in the toe-spreading test, mechanical and thermal algesimetry tests, and TL. Histological analyses also demonstrated that the myelinated axon ratios and axon diameters were significantly higher. Among these findings, the repair group with the MeCbl sheet demonstrated the same recovery in NCV as the sham group. Conclusion: This study demonstrated that electrospun nanofiber MeCbl sheets promoted nerve regeneration and functional recovery, indicating that this treatment strategy may be viable for human peripheral nerve injuries.
Bibliographic Details
Ovid Technologies (Wolters Kluwer Health)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know