Lanthanide-semiconductor probes for precise imaging-guided phototherapy and immunotherapy
Journal of Bio-X Research, ISSN: 2577-3585, Vol: 3, Issue: 4, Page: 193-204
2020
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
Article Description
Objective: Immunotherapy is an effective tumor treatment strategy. However, its long treatment cycle limits its wide application across all cancer types. In this study, we optimized upconversion nanoparticles and manganese composite particles with a porous structure as a nanoplatform for synergistic photodynamic therapy (PDT) and photothermal therapy (PTT), and subsequent longerterm immunotherapy. Methods: The morphology, phase, and stability were first characterized to evaluate the biocompatibility of this material. The upconversion and near infrared II luminescence properties of the material and its stimuli-response effect were assessed from the absorbance and photoluminescence spectra. Phototherapy including PDT and PTT was demonstrated in vitro and in vivo, and immunotherapy was used to enhance the phototherapy. This study was approved by the School of Pharmacy's Ethics Committee of Tumor Hospital of Shaanxi Province, Xi'an Jiaotong University, China (approval No. XJTULAC2020-585) on April 2, 2020. Results: The nanoplatform showed good PDT and PTT effects with high upconversion luminescence, and exhibited a more sensitive glutathione response (detection limit: 55mg/mL) using fluorescence recovery than that based on absorbance recovery, with the detection range extending up to 1.2mg/mL. When the surface of the composite particles was modified with an anti-PD-L1 immune checkpoint inhibitor, it targeted A549 lung cancer cells. The resulting immune response enhanced the long-Term anti-Tumor effect of the therapy, especially in lung cancer patients with high PD-L1 expression. Conclusion: The designed composite can be simultaneously used to detect the glutathione concentration based on luminescence recovery in the tumor cells and as a theranostic nanoplatform for synergistic immuno-phototherapy when combined with an antibody.
Bibliographic Details
American Association for the Advancement of Science (AAAS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know