Age, but Not Repeated Exposure to Gadoterate Meglumine, Is Associated with T1- and T2-Weighted Signal Intensity Changes in the Deep Brain Nuclei of Pediatric Patients
Investigative Radiology, ISSN: 1536-0210, Vol: 54, Issue: 9, Page: 537-548
2019
- 13Citations
- 21Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations13
- Citation Indexes13
- 13
- CrossRef10
- Captures21
- Readers21
- 21
Article Description
Objectives Current findings on gadolinium deposition in the pediatric brain due to repeated exposure to macrocyclic contrast agents are inconclusive and possibly confounded by brain maturation processes. We evaluated the longitudinal effects of repeated gadoterate meglumine exposure (Dotarem; Guerbet, Villepinte, France) on the T1- and T2-weighted signal intensity (SI) in pediatric patients, and assessed the magnitude of age-related increase in T1-weighted (and decrease in T2-weighted) SI in a control cohort without prior gadolinium exposure. Materials and Methods In this retrospective, double-cohort study, magnetic resonance imaging (MRI) data of 24 patients (0.7-16.4 years, M = 5.74, SD = 4.15) who received at least 10 doses of exclusively gadoterate meglumine were included in the longitudinal study. The MRI data of 190 controls (age range, 1-20 years; 10 patients/bin; bin width, 1 year) without any prior gadolinium-based contrast exposure were included in the control, cross-sectional study to assess the age-dependent SI changes in the regions of interest (ROIs). We measured SI (native), T1-weighted gradient echo, and T2-weighted fast spin-echo of 12 deep brain nuclei. The ROIs were measured at each of the first 11 MRI examinations of the contrast-exposed patients and in the control subject's MRI. Regions of interest's SIs, normalized by the pons, were analyzed with mixed effects models, accounting for the potential confounding factors, such as radiotherapy and chemotherapy. Results The number of gadoterate meglumine administrations had no effect on the SI increase in any of the ROIs (all P > 0.05), but age significantly correlated with increased SI in T1-weighted globus pallidus (GP; P < 0.01) and caudate (P < 0.05), and with decreased SI in T2-weighted GP (P < 0.001) and dentate nucleus (P < 0.005) in the contrast-exposed group. The cross-sectional analyses of the control cohort showed a significant age-dependent T1-weighted SI increase in multiple ROIs, including the GP and caudate, and decrease in the T2-weighted GP and dentate nucleus (P < 0.05). Conclusions Repeated exposure to gadoterate meglumine was not associated with brain hyperintensity in the pediatric patients, whereas age importantly contributed to the SI changes in several deep brain nuclei.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85070946563&origin=inward; http://dx.doi.org/10.1097/rli.0000000000000564; http://www.ncbi.nlm.nih.gov/pubmed/30973458; https://journals.lww.com/10.1097/RLI.0000000000000564; https://dx.doi.org/10.1097/rli.0000000000000564; https://journals.lww.com/investigativeradiology/Abstract/2019/09000/Age,_But_Not_Repeated_Exposure_to_Gadoterate.2.aspx
Ovid Technologies (Wolters Kluwer Health)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know