PlumX Metrics
Embed PlumX Metrics

Recombinant human soluble tumor necrosis factor-alpha receptor fusion protein partly attenuates ventilator-induced lung injury

Shock, ISSN: 1073-2322, Vol: 31, Issue: 3, Page: 262-266
2009
  • 30
    Citations
  • 0
    Usage
  • 18
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Ventilator-induced lung injury is mediated, at least in part, by TNF-α. We determined the effect of a recombinant human soluble TNF receptor fusion protein (etanercept) on mechanical ventilation (MV)-induced changes in a murine ventilator-induced lung injury model. After pretreatment with etanercept or placebo, C57BI/6 mice were anesthetized and randomized to MV with either low tidal volumes (V , ∼7.5 mL/kg) or high V (∼15 mLAg) for 5 h. Instrumented but spontaneously breathing mice served as controls. End points were lung wet-to-dry ratios, lung histopathology scores, protein levels, neutrophil cell counts and thrombin-antithrombin complex levels in bronchoalveolar lavage fluid (BALF), and cytokine levels in lung homogenates. The number of caspase 3-positive cells was used as a measure for apoptosis. Etanercept treatment attenuated MV-induced changes, in particular, in MV with high V . Compared with placebo, etanercept reduced the number of neutrophils in BALF and thrombin-antithrombin complex levels in BALF and cytokine levels in lung homogenates. Lung wet-to-dry ratios, histopathology scores, and local protein levels in BALF, however, were not influenced by etanercept treatment. The number of caspase 3-positive cells was significantly higher in etanercept-treated animals. Inhibition of TNF by etanercept attenuates, in part, MV-induced changes. © 2009 by the Shock Society.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know