Neuronal branching is increasingly asymmetric near synapses, potentially enabling plasticity while minimizing energy dissipation and conduction time
Journal of the Royal Society Interface, ISSN: 1742-5662, Vol: 20, Issue: 206, Page: 20230265
2023
- 1Citations
- 9Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
DNA changes supercharged the human brain - but at a cost
Scientists have long suspected that unusually rapid changes in our DNA might hold the key to brain evolution. Researchers have now found that certain stretches
Article Description
Neurons' primary function is to encode and transmit information in the brain and body. The branching architecture of axons and dendrites must compute, respond and make decisions while obeying the rules of the substrate in which they are enmeshed. Thus, it is important to delineate and understand the principles that govern these branching patterns. Here, we present evidence that asymmetric branching is a key factor in understanding the functional properties of neurons. First, we derive novel predictions for asymmetric scaling exponents that encapsulate branching architecture associated with crucial principles such as conduction time, power minimization and material costs. We compare our predictions with extensive data extracted from images to associate specific principles with specific biophysical functions and cell types. Notably, we find that asymmetric branching models lead to predictions and empirical findings that correspond to different weightings of the importance of maximum, minimum or total path lengths from the soma to the synapses. These different path lengths quantitatively and qualitatively affect energy, time and materials. Moreover, we generally observe that higher degrees of asymmetric branching - potentially arising from extrinsic environmental cues and synaptic plasticity in response to activity - occur closer to the tips than the soma (cell body).
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know