Deletions in the hypervariable domain of the nsP3 gene attenuate Semliki Forest virus virulence
Journal of General Virology, ISSN: 0022-1317, Vol: 87, Issue: 4, Page: 937-947
2006
- 32Citations
- 33Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations32
- Citation Indexes32
- 32
- CrossRef25
- Captures33
- Readers33
- 33
Article Description
Major virulence determinants of Semliki Forest virus (SFV) lie within the non-structural genes that form the replicase complex proteins. Gene exchange between virulent and avirulent viruses has shown that the nsP3 gene, which has essential 5′ conserved domains and a non-essential hypervariable 3′ domain, is one of the virulence determinants. This protein plays a role in subgenomic 26S and negative-strand RNA synthesis and is thought to function with nsP1 to anchor replication complexes to cell membrane structures. Studies to date have focused on analysing the effect of mutational changes spread over the whole gene on virulence of the virus. The virulent SFV4 virus, derived from an infectious clone, was utilized to analyse the effect on virulence of large deletions in the hypervariable domain of nsP3. Two viruses with different in-frame deletions that spanned this domain showed reduced rates of RNA synthesis and multiplication in cell culture. In adult BALB/c mice, these viruses were avirulent after intramuscular and intraperitoneal inoculation, and brains sampled from infected mice showed minimal or no evidence of pathology. These deleted viruses had greatly reduced virulence when administered by the intranasal route and brains from infected mice showed lesions that were much less severe than those seen in SFV4 infection. Mice surviving infection with the deleted viruses resisted challenge with the virulent L10 strain, indicating induction of protective immunity. This work establishes that deletions in the nsP3 hypervariable domain attenuate virulence after peripheral inoculation and also reduce virulence after intranasal inoculation. © 2006 SGM.
Bibliographic Details
Microbiology Society
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know