Mitochondrial genetic effects on reproductive success: Signatures of positive intra-sexual, but negative inter-sexual pleiotropy
bioRxiv, ISSN: 2692-8205
2017
- 2Citations
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations2
- Citation Indexes2
- CrossRef2
Article Description
Mitochondria contain their own DNA, and numerous studies have reported that genetic variation in this (mt)DNA sequence modifies the expression of life-history phenotypes. Maternal inheritance of mitochondria adds a layer of complexity to trajectories of mtDNA evolution, because theory predicts the accumulation of mtDNA mutations that are male-biased in effect. While it is clear that mitochondrial genomes routinely harbor genetic variation that affects components of reproductive performance, the extent to which this variation is sex-biased, or even sex-specific in effect, remains elusive. This is because nearly all previous studies have failed to examine mitochondrial genetic effects on both male and female reproductive performance within the one-and-the-same study. Here, we show that variation across naturally-occurring mitochondrial haplotypes affects components of reproductive success in both sexes, in Drosophila melanogaster. However, while we uncovered evidence for positive pleiotropy, across haplotypes, in effects on separate components of reproductive success when measured within the same sex, such patterns were not evident across sexes. Rather, we found a pattern of sexual antagonism across haplotypes on some reproductive parameters. This suggests the pool of polymorphisms that delineate global mtDNA haplotypes is likely to have been partly shaped by maternal transmission of mtDNA and its evolutionary consequences.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know