Kin competition accelerates experimental range expansion in an arthropod herbivore
bioRxiv, ISSN: 2692-8205
2017
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
With ongoing global change, life is continuously forced to move to novel areas, which leads to dynamically changing species ranges. As dispersal is central to range dynamics, factors promoting fast and distant dispersal are key to understanding and predicting species ranges. During range expansions, genetic variation is depleted at the expanding front. Such conditions should reduce evolutionary potential, while increasing kin competition. Organisms able to recognise relatives may be able to assess increased levels of relatedness at expanding range margins and to increase their dispersal in a plastic manner. Using individual-based simulations and experimental range expansions of a spider mite, we demonstrate that plastic responses to kin structure can be at least as important as evolution in driving range expansion speed. Because recognition of kin or kind is increasingly documented across the tree of life, we anticipate it to be a highly important but neglected driver of range expansions.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know