Strategies for cellular deconvolution in human brain RNA sequencing data
bioRxiv, ISSN: 2692-8205
2020
- 6Citations
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations6
- Citation Indexes6
- CrossRef6
Article Description
Statistical deconvolution strategies have emerged over the past decade to estimate the proportion of various cell populations in homogenate tissue sources like brain using gene expression data. Here we show that several existing deconvolution algorithms which estimate the RNA composition of homogenate tissue, relates to the amount of RNA attributable to each cell type, and not the cellular composition relating to the underlying fraction of cells. Incorporating “cell size” parameters into RNA-based deconvolution algorithms can successfully recover cellular fractions in homogenate brain RNA-seq data. We lastly show that using both cell sizes and cell type-specific gene expression profiles from brain regions other than the target/user-provided bulk tissue RNA-seq dataset consistently results in biased cell fractions. We report several independently constructed cell size estimates as a community resource and extend the MuSiC framework to accommodate these cell size estimates (https://github.com/xuranw/MuSiC/).
Bibliographic Details
Cold Spring Harbor Laboratory
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know