PlumX Metrics
Embed PlumX Metrics

An oscillating MinD protein determines the cellular positioning of the motility machinery in archaea

bioRxiv, ISSN: 2692-8205
2020
  • 3
    Citations
  • 0
    Usage
  • 0
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    3
    • Citation Indexes
      3
      • CrossRef
        3

Article Description

MinD proteins are well studied in rod-shaped bacteria such as E. coli, where they display self-organized pole-to-pole oscillations that are important for correct positioning of the Z-ring at mid-cell for cell division. Archaea also encode proteins belonging to the MinD family, but their functions are unknown. MinD homologous proteins were found to be widespread in Euryarchaeota and form a sister group to the bacterial MinD family, distinct from the ParA and other related ATPase families. We aimed to identify the function of four archaeal MinD proteins in the model archaeon Haloferax volcanii. Deletion of the minD genes did not cause cell division or size defects, and the Z-ring was still correctly positioned. Instead, one of the mutations (ΔminD4) reduced swimming motility, and hampered the correct formation of motility machinery at the cell poles. In ΔminD4 cells, there is reduced formation of the motility structure and chemosensory arrays, which are essential for signal transduction. In bacteria, several members of the ParA family can position the motility structure and chemosensory arrays via binding to a landmark protein, and consequently these proteins do not oscillate along the cell axis. However, GFPMinD4 displayed pole-to-pole oscillation and formed polar patches or foci in H. volcanii. The MinD4 membrane targeting sequence (MTS), homologous to the bacterial MinD MTS, was essential for the oscillation. Surprisingly, MinD4 ATPase domain point-mutations did not block oscillation, but they failed to form pole-patches. Thus, MinD4 from H. volcanii combines traits of different bacterial ParA/MinD proteins.

Bibliographic Details

Phillip Nußbaum; Megha Patro; Floriane Delpech; Sonja Verena Albers; Solenne Ithurbide; Iain G. Duggin; James C. Walsh; Marta Rodriguez-Franco; Paul M.G. Curmi; Tessa E.F. Quax

Cold Spring Harbor Laboratory

Biochemistry, Genetics and Molecular Biology; Agricultural and Biological Sciences; Immunology and Microbiology; Neuroscience; Pharmacology, Toxicology and Pharmaceutics

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know