Modelling the impact of reducing control measures on the COVID-19 pandemic in a low transmission setting
medRxiv
2020
- 9Citations
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations9
- Citation Indexes9
- CrossRef9
Article Description
Aims: We assessed COVID-19 epidemic risks associated with relaxing a set of physical distancing restrictions in the state of Victoria, Australia – a setting with low community transmission – in line with a national framework that aims to balance sequential policy relaxations with longer-term public health and economic need. Methods: An agent-based model, Covasim, was calibrated to the local COVID-19 epidemiological and policy environment. Contact networks were modelled to capture transmission risks in households, schools and workplaces, and a variety of community spaces (e.g. public transport, parks, bars, cafes/restaurants) and activities (e.g. community or professional sports, large events). Policy changes that could prevent or reduce transmission in specific locations (e.g. opening/closing businesses) were modelled in the context of interventions that included testing, contact tracing (including via a smartphone app), and quarantine. Results: Policy changes leading to the gathering of large, unstructured groups with unknown individuals (e.g. bars opening, increased public transport use) posed the greatest risk, while policy changes leading to smaller, structured gatherings with known individuals (e.g. small social gatherings) posed least risk. In the model, epidemic impact following some policy changes took more than two months to occur. Model outcomes support continuation of working from home policies to reduce public transport use, and risk mitigation strategies in the context of social venues opening, such as >30% population-uptake of a contact-tracing app, physical distancing policies within venues reducing transmissibility by >40%, or patron identification records being kept to enable >60% contact tracing. Conclusions: In a low transmission setting, care should be taken to avoid lifting sequential COVID-19 policy restrictions within short time periods, as it could take more than two months to detect the consequences of any changes. These findings have implications for other settings with low community transmission where governments are beginning to lift restrictions.
Bibliographic Details
Cold Spring Harbor Laboratory
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know