PlumX Metrics
Embed PlumX Metrics

Characterization of redox sensitive algal mannitol-1-phosphatases of the haloacid dehalogenase superfamily of proteins

bioRxiv, ISSN: 2692-8205
2020
  • 0
    Citations
  • 0
    Usage
  • 2
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Macroalgae (or seaweeds) are the dominant primary producers in marine vegetated coastal habitats and largely contribute to global ocean carbon fluxes. They also represent attractive renewable production platforms for biofuels, food, feed, and bioactives, notably due to their diverse and peculiar polysaccharides and carbohydrates. Among seaweeds, brown algae produce alginates and sulfated fucans as constituents of their cell wall, and the photoassimilates laminarin and mannitol for carbon storage. Availability of brown algal genomes, including those of the kelp Saccharina japonica and the filamentous Ectocarpus sp., has paved the way for biochemical characterization of recombinant enzymes involved in their polysaccharide and carbohydrates synthesis, notably mannitol. Biosynthesis of mannitol in brown algae starts from fructose-6-phospate, which is converted into mannitol-1-phosphate (M1P), and this intermediate is then hydrolysed by a haloacid dehalogenase type M1P phosphatase (M1Pase) to produce mannitol. We report here the biochemical characterization of a second M1Pase in Ectocarpus sp after heterologous expression in Escherichia coli. (EsM1Pase1). Our results show that both Ectocarpus M1Pases were redox sensitive, with EsM1Pase1 being active only in presence of reducing agent. Such catalytic properties have not been observed for any of the M1Pase characterized so far. EsM1Pases were specific to mannitol, in contrast to S. japonica M1Pases that can use other phosphorylated sugars as substrates. Finally, brown algal M1Pases grouped into two well-supported clades, with potential different subcellular localization and physiological role(s) under diverse environmental conditions and/or stages of life cycle.

Bibliographic Details

Yoran Le Strat; Catherine Leblanc; Agnès Groisillier; Thierry Tonon

Cold Spring Harbor Laboratory

Biochemistry, Genetics and Molecular Biology; Agricultural and Biological Sciences; Immunology and Microbiology; Neuroscience; Pharmacology, Toxicology and Pharmaceutics

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know