Effect of manual and digital contact tracing on COVID-19 outbreaks: A study on empirical contact data
medRxiv
2020
- 6Citations
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations6
- Citation Indexes6
- CrossRef6
- Mentions1
- News Mentions1
- 1
Most Recent News
EU Track and Trace: the €100m failure
Despite European hopes being invested in the technology, contact tracing apps have only succeeded in tracking 5% of registered cases since they were introduced in
Article Description
In the fight against the COVID-19 pandemic, lockdowns have succeeded in limiting contagions in many countries, at however heavy societal costs: more targeted non-pharmaceutical interventions are desirable to contain or mitigate potential resurgences. Contact tracing, by identifying and quarantining people who have been in prolonged contact with an infectious individual, has the potential to stop the spread where and when it occurs, with thus limited impact. The limitations of manual contact tracing (MCT), due to delays and imperfect recall of contacts, might be compensated by digital contact tracing (DCT) based on smartphone apps, whose impact however depends on the app adoption. To assess the efficiency of such interventions in realistic settings, we use here datasets describing contacts between individuals in several contexts, with high spatial and temporal resolution, to feed numerical simulations of a compartmental model for COVID-19. We find that the obtained reduction of epidemic size has a robust behavior: this benefit is linear in the fraction of contacts recalled during MCT, and quadratic in the app adoption, with no threshold effect. The combination of tracing strategies can yield important benefits, and the cost (number of quarantines) vs. benefit curve has a typical parabolic shape, independent on the type of tracing, with a high benefit and low cost if app adoption and MCT efficiency are high enough. Our numerical results are qualitatively confirmed by analytical results on simplified models. These results may inform the inclusion of MCT and DCT within COVID-19 response plans.
Bibliographic Details
Cold Spring Harbor Laboratory
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know