Metabolic reprogramming by in Utero maternal benzene exposure
bioRxiv, ISSN: 2692-8205
2020
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Environmental chemicals play a significant role in the development of metabolic disorders, especially when exposure occurs early in life. We have recently demonstrated that benzene exposure, at concentrations relevant to a cigarette smoke, induces a severe metabolic imbalance in a sex-specific manner affecting male but not female mice. However, the roles of benzene in the development of aberrant metabolic outcomes following gestational exposure, remain largely unexplored. In this study, we exposed pregnant C57BL/6JB dams to benzene at 50 ppm or filtered air for 5 days/week (6h/day from gestational day 1 to birth) and studied male and female offspring metabolic phenotypes in their adult life. While no changes in body weight or body composition were observed between groups, 4-month-old male and female offspring exhibited reduced parameters of energy homeostasis (VO2, VCO2, and heat production). However, only male offspring from benzene-exposed dams were glucose intolerant and insulin resistant at this age. By six months of age, both male and female offspring displayed glucose and insulin intolerance, associated with elevated expression of hepatic gluconeogenesis and inflammatory genes. Additionally, this effect was accompanied by elevated insulin secretion and increased beta-cell mass only in male offspring. Thus, gestational benzene exposure can reprogram offspring for increased susceptibility to the metabolic imbalance in adulthood with differential sensitivity between sexes.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know