PlumX Metrics
Embed PlumX Metrics

Molecular dynamics and in silico mutagenesis on the reversible inhibitor-bound SARS-CoV-2 Main Protease complexes reveal the role of a lateral pocket in enhancing the ligand affinity

bioRxiv, ISSN: 2692-8205
2020
  • 0
    Citations
  • 0
    Usage
  • 0
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Article Description

The 2019 novel coronavirus pandemic caused by SARS-CoV-2 remains a serious health threat to humans and a number of countries are already in the middle of the second wave of infection. There is an urgent need to develop therapeutics against this deadly virus. Recent scientific evidences have suggested that the main protease (M) enzyme in SARS-CoV-2 can be an ideal drug target due to its crucial role in the viral replication and transcription processes. Therefore, there are ongoing research efforts to identify drug candidates against SARS-CoV-2 Mpro that resulted in hundreds of X-ray crystal structures of ligand bound M complexes in the protein data bank (PDB) that describe structural details of different chemotypes of fragments binding within different sites in M. In this work, we perform rigorous molecular dynamics (MD) simulation of 62 reversible ligand-M complexes in the PDB to gain mechanistic insights about their interactions at atomic level. Using a total of ~2.25 µs long MD trajectories, we identified and characterized different pockets and their conformational dynamics in the apo M structure. Later, using the published PDB structures, we analyzed the dynamic interactions and binding affinity of small ligands within those pockets. Our results identified the key residues that stabilize the ligands in the catalytic sites and other pockets in M. Our analyses unraveled the role of a lateral pocket in the catalytic site in Mpro that is critical for enhancing the ligand binding to the enzyme. We also highlighted the important contribution from HIS163 in this lateral pocket towards ligand binding and affinity against M through computational mutation analyses. Further, we revealed the effects of explicit water molecules and Mpro dimerization in the ligand association with the target. Thus, comprehensive molecular level insights gained from this work can be useful to identify or design potent small molecule inhibitors against SARS-CoV-2 M.

Bibliographic Details

Ying Li Weng; Shiv Rakesh Naik; Nadia Dingelstad; Aravindhan Ganesan; Subha Kalyaanamoorthy

Cold Spring Harbor Laboratory

Biochemistry, Genetics and Molecular Biology; Agricultural and Biological Sciences; Immunology and Microbiology; Neuroscience; Pharmacology, Toxicology and Pharmaceutics

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know