Comparing global and regional maps of intactness in the boreal region of North America: Implications for conservation planning in one of the world’s remaining wilderness areas
bioRxiv, ISSN: 2692-8205
2020
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Though North America’s boreal forest contains some of the largest remaining intact and wild ecosystems in the world, human activities are systematically reducing its extent. Consequently, forest intactness and human influence maps are increasingly used for monitoring and conservation planning in the boreal region. We compare eight forest intactness and human impact maps to provide a multimodel assessment of intactness in the boreal region. All maps are global in extent except for Global Forest Watch Canada’s Human Access (2000) and Intact Forest Landscapes (2000, 2013) maps, although some global maps are restricted to areas that were at least 20% treed. As a function of each map’s spatial coverage in North America, the area identified as intact ranged from 55% to 79% in Canada and from 32% to 96% in Alaska. Likewise, the similarity between pairs of datasets in the Canadian boreal ranged from 0.58 to 0.86 on a scale of 0-1. In total, 45% of the region was identified as intact by the seven most recent datasets. There was also variation in the ability of the datasets to account for anthropogenic disturbances that are increasingly common in the boreal region, such as those associated with resource extraction. In comparison to a recently developed high resolution regional disturbance dataset, the four human influence datasets (Human Footprint, Global Human Modification, Large Intact Areas, and Anthropogenic Biomes), in particular, omitted 59-85% of all linear disturbances and 54-89% of all polygonal disturbances. In contrast, the global IFL, Canadian IFL, and Human Access maps omitted 2-7% of linear disturbances and 0.1-5% of polygonal disturbances. Several differences in map characteristics, including input datasets and methods used to develop the maps may help explain these differences. Ultimately, the decision on which dataset to use will depend on the objectives of each specific conservation planning project, but we recommend using datasets that 1) incorporate regional anthropogenic activities, 2) are updated regularly, 3) provide detailed information of the methods and input data used, and 4) can be replicated and adapted for local use. This is especially important in landscapes that are undergoing rapid change due to development, such as the boreal forest of North America.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know