High-order areas and auditory cortex both represent the high-level event structure of music
bioRxiv, ISSN: 2692-8205
2021
- 2Citations
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations2
- Citation Indexes2
- CrossRef2
Article Description
Recent fMRI studies of event segmentation have found that default mode regions represent high-level event structure during movie watching. In these regions, neural patterns are relatively stable during events and shift at event boundaries. Music, like narratives, contains hierarchical event structure (e.g., sections are composed of phrases). Here, we tested the hypothesis that brain activity patterns in default mode regions reflect the high-level event structure of music. We used fMRI to record brain activity from 25 participants (male and female) as they listened to a continuous playlist of 16 musical excerpts, and additionally collected annotations for these excerpts by asking a separate group of participants to mark when meaningful changes occurred in each one. We then identified temporal boundaries between stable patterns of brain activity using a hidden Markov model and compared the location of the model boundaries to the location of the human annotations. We identified multiple brain regions with significant matches to the observer-identified boundaries, including auditory cortex, medial prefrontal cortex, parietal cortex, and angular gyrus. From these results, we conclude that both higher-order and sensory areas contain information relating to the high-level event structure of music. Moreover, the higher-order areas in this study overlap with areas found in previous studies of event perception in movies and audio narratives, including regions in the default mode network.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know