Diffusion of the disordered E-cadherin tail on β-catenin
bioRxiv, ISSN: 2692-8205
2021
- 5Citations
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations5
- Citation Indexes5
- CrossRef5
Article Description
Specific protein interactions typically require well-shaped binding interfaces. Here, we report a cunning exception. The disordered tail of the cell-adhesion protein E-cadherin dynamically samples a large surface area of the proto-oncogene β-catenin. Single-molecule experiments and molecular simulations resolve these motions with high resolution in space and time. Contacts break and form within hundreds of microseconds without dissociation of the complex. A few persistent interactions provide specificity whereas unspecific contacts boost affinity. The energy landscape of this complex is rugged with many small barriers (3 – 4 kT) and reconciles specificity, high affinity, and extreme disorder. Given the roles of β-catenin in cell-adhesion, signalling, and cancer, this Velcro-like design has the potential to tune the stability of the complex without requiring dissociation.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know