Tributyltin exposure leads to increased adiposity and reduced abundance of leptogenic bacteria in the zebrafish intestine
bioRxiv, ISSN: 2692-8205
2021
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The chemical obesogen tributyltin (TBT) is known to promote fat storage in adipose tissue through direct action on vertebrate cells. TBT also has direct toxic effects on microorganisms, raising the possibility that TBT may also promote fat storage in vertebrates by altering their microbiota. Here we show that exposure of conventionally-reared post-embryonic zebrafish to TBT results in increased adiposity, reduced body size, and altered intestinal microbiota composition including reduced relative abundance of Plesiomonas bacteria. To test if those microbiota alterations affected host adiposity, we exposed conventionally-reared zebrafish to intestinal bacterial strains representative of TBT-altered taxa. We found that introduction of a Plesiomonas strain into conventionally-reared zebrafish was sufficient to reduce adiposity and alter intestinal microbiota composition. Using new long-term gnotobiotic zebrafish husbandry methods, we found that colonization of germ-free zebrafish with Plesiomonas was sufficient to reduce host adiposity. Together these results show the leptogenic activity of Plesiomonas on zebrafish hosts, indicating that the ability of TBT to increase adiposity in vivo may be due in part to TBT-mediated modification of the abundance of leptogenic bacteria like Plesiomonas. These findings underscore how complex reciprocal interactions between animals and their microbial and chemical environments can influence energy balance and metabolic health.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know