PlumX Metrics
Embed PlumX Metrics

Quantifying biochemical reaction rates from static population variability within complex networks

bioRxiv, ISSN: 2692-8205
2021
  • 0
    Citations
  • 0
    Usage
  • 0
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Article Description

Quantifying biochemical reaction rates within complex cellular processes remains a key challenge of systems biology even as high-throughput single-cell data have become available to characterize snapshots of population variability. That is because complex systems with stochastic and nonlinear interactions are difficult to analyze when not all components can be observed simultaneously and systems cannot be followed over time. Instead of using descriptive statistical models, we show that incompletely specified mechanistic models can be used to translate qualitative knowledge of interactions into reaction rate functions from covariability data between pairs of components. This promises to turn a globally intractable problem into a sequence of solvable inference problems to quantify complex interaction networks from incomplete snapshots of their stochastic fluctuations.

Bibliographic Details

Timon Wittenstein; Nava Leibovich; Andreas Hilfinger

Cold Spring Harbor Laboratory

Biochemistry, Genetics and Molecular Biology; Agricultural and Biological Sciences; Immunology and Microbiology; Neuroscience; Pharmacology, Toxicology and Pharmaceutics

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know