Dephosphorylation of the pre-initiation complex during S-phase is critical for origin firing
bioRxiv, ISSN: 2692-8205
2021
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Genome stability requires complete DNA duplication exactly once before cell division. In eukaryotes, cyclin-dependent kinase (CDK) plays a dual role in this regulation by inhibiting helicase loading factors before also activating origin firing. CDK activates initiation by phosphorylation of two substrates, Sld2 and Sld3, forming a transient and limiting intermediate - the pre-initiation complex (pre-IC). The importance and mechanism of dissociation of the pre-IC from origins is not understood. Here we show in the budding yeast Saccharomyces cerevisiae that CDK phosphorylation of Sld3 and Sld2 is specifically and rapidly turned over during interphase by the PP2A and PP4 phosphatases. Inhibiting dephosphorylation of Sld3/Sld2 causes dramatic defects in replication initiation genome-wide, retention of the pre-IC at origins and cell death. These studies not only provide a mechanism to guarantee that Sld3 and Sld2 are dephosphorylated before helicase loading factors but also uncover a novel positive role for phosphatases in eukaryotic origin firing.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know