Genotype-specific transcriptional responses overshadow salinity effects in a marine diatom sampled along the Baltic Sea salinity cline
bioRxiv, ISSN: 2692-8205
2021
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The salinity gradient separating marine and freshwater environments represents a major ecological divide for microbiota, yet the mechanisms by which marine microbes have adapted to and ultimately diversified in freshwater environments are poorly understood. Here, we take advantage of a natural evolutionary experiment: the colonization of the brackish Baltic Sea by the ancestrally marine diatom Skeletonema marinoi. To understand how diatoms respond to low salinity, we characterized transcriptomic responses of S. marinoi grown in a common garden. Our experiment included eight genotypes from source populations spanning the Baltic Sea salinity cline. Changes in gene expression revealed a shared response to salinity across genotypes, where low salinities induced profound changes in cellular metabolism, including upregulation of carbon fixation and storage compound biosynthesis, and increased nutrient demand and oxidative stress. Nevertheless, the genotype effect overshadowed the salinity effect, as genotypes differed significantly in their response, both in the magnitude and direction of gene expression. Intraspecific differences included regulation of transcription and translation, nitrogen metabolism, cell signaling, and aerobic respiration. The high degree of intraspecific variation in gene expression observed here highlights an important but often overlooked source of biological variation associated with how diatoms respond and adapt to environmental change.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know