Predicting personalised risk of disability worsening in multiple sclerosis with machine learning
medRxiv
2022
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Multiple sclerosis is a heterogeneous disease with an unpredictable course. We applied machine learning to generate individualised risk scores of disability worsening and stratify patients into subgroups with different prognosis. Clinical data and MRI scans from published randomised clinical trials in patients with relapsing-remitting and progressive MS were divided into training (n=5,483) and external validation data sets (n=2,668). We processed brain MRI scans to obtain 18 measures for lobar grey matter, deep grey matter and lesion volumes, and T1-/T2-weighted ratio of the normal-appearing white matter regions. We developed a machine learning model, called subpopulation risk stratification (SunRiSe), that combines multi-parametric clinical and MRI data to estimate individualised risk scores and stratify patients into subgroups on the basis of this risk; in particular, we entered MRI measures, the Expanded Disability Status Scale, age and gender to generate risk scores of disability worsening (i.e., the time to confirmed disability worsening). Based on SunRiSe risk scores, high-, medium-, and low-risk subpopulations were defined at study entry. We assessed whether selecting patients at high risk of disability worsening reduces sample size compared to when all risk groups were sampled together. In both the training and external validation data sets, SunRiSe-stratified patients in three groups associated with different levels of risk of disability worsening. In the external validation data set, patients at high risk were mainly progressive MS and had more disability events compared to those at medium-risk (hazard ratio [HR]=1.34, p<0.0001) and low-risk (HR=1.51, p<0.0001). At study entry, male gender, older age, higher lesion load, higher disability, lower lobar cortical grey matter, lower normal-appearing white matter T1/T2 ratio and lower deep grey matter volumes, were the most important variables in defining the SunRiSe risk score. The inclusion of patients predicted to be at high risk, reduced (i) duration of an event-driven trial by an average of 4.5 months (±2.1 months); (ii) the number of participants in a randomised trial by approximately 200, with 80% statistical power to detect a 30% treatment effect. Machine learning provides a personalised risk score that can identify patients who have the greatest risk of disability worsening and therefore should be treated with the most effective medications and monitored more closely. Risk stratification allows the enrichment of clinical trials with patients more likely to worsen, and thereby reduces trial duration and sample size.
Bibliographic Details
Cold Spring Harbor Laboratory
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know