PlumX Metrics
Embed PlumX Metrics

Acute thermal stress elicits interactions between gene expression and alternative splicing in a fish of conservation concern

bioRxiv, ISSN: 2692-8205
2022
  • 1
    Citations
  • 0
    Usage
  • 0
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    1
    • Citation Indexes
      1
      • CrossRef
        1

Article Description

Transcriptomics provides a mechanistic understanding of an organism’s response to environmental challenges such as increasing temperatures, which can provide key insights into the threats posed by thermal challenges associated with urbanization and climate change. Differential gene expression and alternative splicing are two elements of the transcriptomic stress response that may work in tandem, but relatively few studies have investigated these interactions in fishes of conservation concern. We studied the imperilled redside dace (Clinostomus elongatus) as thermal stress is hypothesised to be an important cause of population declines. We tested the hypothesis that gene expression-splicing interactions contribute to the thermal stress response. Wild fish exposed to acute thermal stress were compared with both handling controls and fish sampled directly from a river. Liver tissue was sampled to study the transcriptomic stress response. Thermally stressed fish showed a prominent transcriptional response (estimated with mRNA transcript abundance) related to transcription regulation and responses to unfolded proteins, and prominent alternatively spliced genes related to gene expression regulation and metabolism. One splicing factor, prpf38b, was upregulated in the thermally stressed group compared to the other treatments. This splicing factor may have a role in the Jun/AP-1 cellular stress response, a pathway with wide-ranging and context-dependent effects. Given large gene interaction networks and the context-dependent nature of transcriptional responses, our results highlight the importance of understanding interactions between gene expression and splicing for understanding transcriptomic responses to thermal stress. Our results also reveal transcriptional pathways that can inform conservation breeding, translocation, and reintroduction programs for redside dace and other imperilled species by identifying appropriate source populations.

Bibliographic Details

Matt J. Thorstensen; Ken M. Jeffries; Andy J. Turko; Daniel D. Heath; Trevor E. Pitcher

Cold Spring Harbor Laboratory

Biochemistry, Genetics and Molecular Biology; Agricultural and Biological Sciences; Immunology and Microbiology; Neuroscience; Pharmacology, Toxicology and Pharmaceutics

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know