PlumX Metrics
Embed PlumX Metrics

Dissociating the contributions of sensorimotor striatum to automatic and visually-guided motor sequences

bioRxiv, ISSN: 2692-8205
2022
  • 0
    Citations
  • 0
    Usage
  • 0
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Article Description

The ability to sequence movements in response to new task demands enables rich and adaptive behavior. Such flexibility, however, is computationally costly and can result in halting performances. Practicing the same motor sequence repeatedly can render its execution precise, fast, and effortless, i.e., ‘automatic’. The basal ganglia are thought to underlie both modes of sequence execution, yet whether and how their contributions differ is unclear. We parse this in rats trained to perform the same motor sequence in response to cues and in an overtrained, or ‘automatic’, condition. Neural recordings in the sensorimotor striatum revealed a kinematic code independent of execution mode. While lesions affected the detailed kinematics similarly across modes, they disrupted high-level sequence structure for automatic, but not visually-guided, behaviors. These results suggest that the basal ganglia contribute to learned movement kinematics and are essential for ‘automatic’ motor skills but can be dispensable for sensory-guided motor sequences.

Bibliographic Details

Kevin G.C. Mizes; Jack Lindsey; G. Sean Escola; Bence P. Ölveczky

Cold Spring Harbor Laboratory

Biochemistry, Genetics and Molecular Biology; Agricultural and Biological Sciences; Immunology and Microbiology; Neuroscience; Pharmacology, Toxicology and Pharmaceutics

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know