Sequential antibiotic therapy in the lab and in the patient
bioRxiv, ISSN: 2692-8205
2022
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Mentions1
- News Mentions1
- News1
Most Recent News
Sequential antibiotic therapy in the lab and in the patient (Updated November 14, 2022)
2022 NOV 25 (NewsRx) -- By a News Reporter-Staff News Editor at NewsRx Drug Daily -- According to news reporting based on a preprint abstract,
Article Description
Laboratory experiments suggest that rapid cycling of antibiotics during the course of treatment could successfully counter resistance evolution. Drugs involving collateral sensitivity could be particularly suitable for such therapies. However, the environmental conditions in-vivo differ from those in-vitro. One key difference is that drugs can be switched abruptly in the lab, while in the patient, pharmacokinetic processes lead to changing antibiotic concentrations including periods of dose overlaps from consecutive administrations. During such overlap phases, drug-drug interactions may affect the evolutionary dynamics. To address the gap between the lab and potential clinical applications, we set up two models for comparison - a ‘lab model’ and a pharmacokinetic-pharmacodynamic ‘patient model’. The analysis shows that in the lab, the most rapid cycling suppresses the bacterial population always at least as well as other regimens. For patient treatment, however, a little slower cycling can sometimes be preferable if the pharmacodynamic curve is steep or if drugs interact antagonistically. When resistance is absent prior to treatment, collateral sensitivity brings no substantial benefit unless the cell division rate is low and drug cycling slow. By contrast, drug-drug interactions strongly influence the treatment efficiency of rapid regimens, demonstrating their importance for the optimal choice of drug pairs.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know