From Molecular Dynamics to Supramolecular Organization: The Role of PIM Lipids in the Originality of the Mycobacterial Plasma Membrane
bioRxiv, ISSN: 2692-8205
2022
- 3Citations
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations3
- Citation Indexes3
- CrossRef3
Article Description
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, a disease that claims ~1.5 million lives annually. The current treatment regime is long and expensive, and missed doses contribute to drug resistance. There is much to be understood about the Mtb cell envelope, a complicated barrier that antibiotics need to negotiate to enter the cell. Within this envelope, the plasma membrane is the ultimate obstacle and is proposed to be comprised of over 50% mannosylated phosphatidylinositol lipids (phosphatidyl-myoinositol mannosides, PIMs), whose role in the membrane structure remains elusive. Here we used multiscale molecular dynamics (MD) simulations to understand the structure-function relationship of the PIM lipid family and decipher how they self-organize to drive biophysical properties of the Mycobacterial plasma membrane. To validate the model, we tested known antitubercular drugs and replicated previous experimental results. Our results shed new light into the organization of the Mycobacterial plasma membrane and provides a working model of this complex membrane to use for in silico studies. This opens the door for new methods to probe potential antibiotic targets and further understand membrane protein function.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know