Improving protein secondary structure prediction by deep language models and transformer networks
bioRxiv, ISSN: 2692-8205
2022
- 5Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures5
- Readers5
Article Description
Protein secondary structure prediction is useful for many applications. It can be considered a language translation problem, i.e., translating a sequence of 20 different amino acids into a sequence of secondary structure symbols (e.g., alpha helix, beta strand, and coil). Here, we develop a novel protein secondary structure predictor called TransPross based on the transformer network and attention mechanism widely used in natural language processing to directly extract the evolutionary information from the protein language (i.e., raw multiple sequence alignment (MSA) of a protein) to predict the secondary structure. The method is different from traditional methods that first generate a MSA and then calculate expert-curated statistical profiles from the MSA as input. The attention mechanism used by TransPross can effectively capture long-range residue-residue interactions in protein sequences to predict secondary structures. Benchmarked on several datasets, TransPross outperforms the state-of-art methods. Moreover, our experiment shows that the prediction accuracy of TransPross positively correlates with the depth of MSAs and it is able to achieve the average prediction accuracy (i.e., Q3 score) above 80% for hard targets with few homologous sequences in their MSAs.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know