BDNF and TRiC-inspired Reagents Rescue Cortical Synaptic Deficits in a Mouse Model of Huntington's Disease
bioRxiv, ISSN: 2692-8205
2022
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Mentions1
- News Mentions1
- 1
Most Recent News
BDNF and TRiC-inspired Reagents Rescue Cortical Synaptic Deficits in a Mouse Model of Huntington's Disease
2022 DEC 14 (NewsRx) -- By a News Reporter-Staff News Editor at Pain & Central Nervous System Daily News -- According to news reporting based
Article Description
Huntingtons disease (HD) results from a CAG repeat expansion in the gene for Huntington (HTT) resulting in expansion of the polyglutamine (Q) tract in the mutant protein (mHTT). Synaptic changes are early manifestations of neuronal dysfunction in HD. However, the mechanism(s) by which mHTT impacts synapse formation and function is not well defined. Herein we explored HD pathogenesis in the BACHD and the δN17-BACHD mouse models of HD by examining cortical synapse formation and function in primary cultures maintained for up to 35 days (DIV35). We identified synapses by immunostaining with antibodies against pre-synaptic (Synapsin 1) and a post-synaptic (PSD95) marker. Consistent with earlier studies, cortical neurons from both WT and the HD models began to form synapses at DIV14; at this age there were no genotypic differences in synapse numbers. However, from DIV21 through DIV35 BACHD neurons showed progressively smaller numbers of synapses relative to WT neurons. Remarkably, BACHD synaptic deficits were completely rescued by treating cultures with BDNF. Building on earlier studies using reagents inspired by the chaperonin TRiC, we found that addition of the recombinant apical domain of CCT1 partially rescued synapse number. Unexpectedly, unlike BACHD cultures, synapses in δN17-BACHD cultures showed a progressive increase in number as compared to WT neurons, thus distinguishing synaptic changes in these HD models. Using multielectrode arrays, we discovered age-related functional deficits in BACHD cortical cultures with significant differences present by DIV28. As for synapse number, BDNF treatment prevented most synaptic deficits, including mean firing rate, spikes per burst, inter-burst interval, and synchrony. The apical domain of CCT1 showed similar, albeit less potent effects. These data are evidence that deficits in HD synapse number and function can be replicated in vitro and that treatment with either BDNF or a TRiC-inspired reagent can prevent them. Our findings support the use of cellular models to further explicate HD pathogenesis and its treatments.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know