Bacterial toxin-antitoxin system MazEF as a native defense mechanism against RNA phages in Escherichia coli
bioRxiv, ISSN: 2692-8205
2023
- 1Citations
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations1
- Citation Indexes1
- CrossRef1
- Mentions1
- News Mentions1
- 1
Most Recent News
Bacterial toxin-antitoxin system MazEF as a native defense mechanism against RNA phages in Escherichia coli
2023 FEB 14 (NewsRx) -- By a News Reporter-Staff News Editor at Health & Medicine Daily -- According to news reporting based on a preprint
Article Description
Bacteria have evolved a wide range of defense strategies to protect themselves against bacterial viruses (phages). However, the known mechanisms almost exclusively target phages with DNA genomes. While several bacterial toxin-antitoxin systems have been considered to cleave single-stranded bacterial RNA in response to stressful conditions, their role in protecting bacteria against phages with single-stranded RNA genomes has not been studied. Here we investigate the role of a representative toxin-antitoxin system, MazEF, in protecting Escherichia coli against two RNA phages – MS2 and Qβ. Our population-level experiments revealed that a mazEF deletion strain is more susceptible to RNA phage infection than the wild-type. At the single-cell level, deletion of the mazEF locus significantly shortened the time to lysis of individual bacteria challenged with RNA phage. At the genomic level, we found that the adenine-cytosine-adenine sequence, directly recognized and cleaved by the MazF toxin, is systematically underrepresented in the genomes of RNA phages that are known to infect E. coli, indicating selection for decreased probability of cleavage. These results suggest that in addition to other physiological roles, RNA-degrading toxin-antitoxin modules can function as a primitive immune system against RNA phages.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know