Impact of inoculation practices on microbiota assembly and community stability in a fabricated ecosystem
bioRxiv, ISSN: 2692-8205
2023
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
Article Description
Studying plant-microbe-soil interactions is challenging due to their high complexity and variability in natural ecosystems. While fabricated ecosystems provide opportunities to recapitulate aspects of these systems in reduced complexity and controlled environments, inoculation can be a significant source of variation. To tackle this, we evaluated how different bacteria inoculation practices and plant harvesting time points affect the reproducibility of a microbial synthetic community (SynCom) in association with the model grass Brachypodium distachyon. We tested three microbial inoculation practices: seed inoculation, transplant inoculation, and seedling inoculation; and two harvesting points: early (14-day-old plants) and late (21 days post-inoculation). We grew our plants and bacterial strains in sterile devices (EcoFABs) and characterized the microbial community from root, rhizosphere, and sand using 16S ribosomal RNA gene sequencing. The results showed that inoculation practices significantly affected the rhizosphere microbial community only when harvesting at an early time point but not at the late stage. As the SynCom showed a persistent association with B. distachyon at 21 days post-inoculation regardless of inoculation practices, we assessed the reproducibility of each inoculation method and found that transplant inoculation showed the highest reproducibility. Moreover, plant biomass was not adversely affected by transplant inoculation treatment. We concluded that bacteria inoculation while transplanting coupled with a later harvesting time point gives the most reproducible microbial community in the EcoFAB-B. distachyon-SynCom fabricated ecosystem and recommend this method as a standardized protocol for use with fabricated ecosystem experimental systems.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know