Nanoparticle endocytosis is driven by monocyte phenotype rather than nanoparticle size under high shear flow conditions
bioRxiv, ISSN: 2692-8205
2023
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Mentions1
- News Mentions1
- News1
Most Recent News
Nanoparticle endocytosis is driven by monocyte phenotype rather than nanoparticle size under high shear flow conditions
2023 JUL 19 (NewsRx) -- By a News Reporter-Staff News Editor at Genomics & Genetics Daily -- According to news reporting based on a preprint
Article Description
Monocytes are members of the mononuclear phagocyte system involved in pathogen clearance and nanoparticle pharmacokinetics. Monocytes play a critical role in the development and progression of cardiovascular disease and, recently, in SARS-CoV-2 pathogenesis. While studies have investigated the effect of nanoparticle modulation on monocyte uptake, their capacity for nanoparticle clearance is poorly studied. In this study, we investigated the impact of ACE2 deficiency, frequently observed in individuals with cardiovascular complications, on monocyte nanoparticle endocytosis. Moreover, we investigated nanoparticle uptake as a function of nanoparticle size, physiological shear stress, and monocyte phenotype. Our Design of Experiment (DOE) analysis found that the THP-1 ACE2 cells showed a greater preference for 100nm particles under atherosclerotic conditions than THP-1 wild-type cells. Observing how nanoparticles can modulate monocytes in the context of disease can inform precision dosing.
Bibliographic Details
Cold Spring Harbor Laboratory
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know