Advancement in Cellular Topographic and Nanoparticle Capture Imaging by High Resolution Microscopy Incorporating a Freeze-Drying and Gaseous Nitrogen-based Approach
bioRxiv, ISSN: 2692-8205
2023
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Scanning electron microscopy (SEM) offers an unparalleled view of the membrane topography of mammalian cells by using a conventional osmium (OsO4) and ethanol-based tissue preparation. However, conventional SEM methods limit optimal resolution due to ethanol and lipid interactions and interfere with visualization of fluorescent reporter proteins. Therefore, SEM correlative light and electron microscopy (CLEM) has been hindered by the adverse effects of ethanol and OsO4 on retention of fluorescence signals. To overcome this technological gap in achieving high-resolution SEM and retain fluorescent reporter signals, we developed a freeze-drying method with gaseous nitrogen (FDGN). We demonstrate that FDGN preserves cytoarchitecture to allow visualization of detailed membrane topography while retaining fluorescent signals and that FDGN processing can be used in conjunction with a variety of high-resolution imaging systems to enable collection and validation of unique, high-quality data from these approaches. In particular, we show that FDGN coupled with high resolution microscopy provided detailed insight into viral or tumor-derived extracellular vesicle (TEV)-host cell interactions and may aid in designing new approaches to intervene during viral infection or to harness TEVs as therapeutic agents.
Bibliographic Details
Cold Spring Harbor Laboratory
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know