PlumX Metrics
Embed PlumX Metrics

Transient power-law behaviour following induction distinguishes between competing models of stochastic gene expression

bioRxiv, ISSN: 2692-8205
2023
  • 0
    Citations
  • 0
    Usage
  • 0
    Captures
  • 1
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Mentions
    1
    • News Mentions
      1
      • News
        1

Most Recent News

Transient power-law behaviour following induction distinguishes between competing models of stochastic gene expression (Updated October 1, 2024)

2024 OCT 11 (NewsRx) -- By a News Reporter-Staff News Editor at NewsRx Life Science Daily -- According to news reporting based on a preprint

Article Description

What features of transcription can be learnt by fitting mathematical models of gene expression to mRNA count data? Given a suite of models, fitting to data selects an optimal one, thus identifying a probable transcriptional mechanism. Whilst attractive, the utility of this methodology remains unclear. Here, we sample steady-state, single-cell mRNA count distributions from parameters in the physiological range, and show they cannot be used to confidently estimate the number of inactive gene states, i.e. the number of rate-limiting steps in transcriptional initiation. Distributions from over 99% of the parameter space generated using models with 2, 3, or 4 inactive states can be well fit by one with a single inactive state. However, we show that for many minutes following induction, eukaryotic cells show an increase in the mean mRNA count that obeys a power law whose exponent equals the sum of the number of states visited from the initial inactive to the active state and the number of rate-limiting post-transcriptional processing steps. Our study shows that estimation of the exponent from eukaryotic data can be sufficient to determine a lower bound on the total number of regulatory steps in transcription initiation, splicing, and nuclear export.

Bibliographic Details

Andrew G. Nicoll; Juraj Szavits-Nossan; Ramon Grima; Martin R. Evans

Cold Spring Harbor Laboratory

Biochemistry, Genetics and Molecular Biology; Agricultural and Biological Sciences; Immunology and Microbiology; Neuroscience; Pharmacology, Toxicology and Pharmaceutics

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know