Transient power-law behaviour following induction distinguishes between competing models of stochastic gene expression
bioRxiv, ISSN: 2692-8205
2023
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Mentions1
- News Mentions1
- News1
Most Recent News
Transient power-law behaviour following induction distinguishes between competing models of stochastic gene expression (Updated October 1, 2024)
2024 OCT 11 (NewsRx) -- By a News Reporter-Staff News Editor at NewsRx Life Science Daily -- According to news reporting based on a preprint
Article Description
What features of transcription can be learnt by fitting mathematical models of gene expression to mRNA count data? Given a suite of models, fitting to data selects an optimal one, thus identifying a probable transcriptional mechanism. Whilst attractive, the utility of this methodology remains unclear. Here, we sample steady-state, single-cell mRNA count distributions from parameters in the physiological range, and show they cannot be used to confidently estimate the number of inactive gene states, i.e. the number of rate-limiting steps in transcriptional initiation. Distributions from over 99% of the parameter space generated using models with 2, 3, or 4 inactive states can be well fit by one with a single inactive state. However, we show that for many minutes following induction, eukaryotic cells show an increase in the mean mRNA count that obeys a power law whose exponent equals the sum of the number of states visited from the initial inactive to the active state and the number of rate-limiting post-transcriptional processing steps. Our study shows that estimation of the exponent from eukaryotic data can be sufficient to determine a lower bound on the total number of regulatory steps in transcription initiation, splicing, and nuclear export.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know