Host evolution improves genetic circuit function in complex growth environments
bioRxiv, ISSN: 2692-8205
2024
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Mentions1
- News Mentions1
- News1
Most Recent News
Host evolution improves genetic circuit function in complex growth environments
2024 MAR 22 (NewsRx) -- By a News Reporter-Staff News Editor at NewsRx Life Science Daily -- According to news reporting based on a preprint
Article Description
Genetically engineered bacteria have become an attractive platform for numerous biomedical and industrial applications. Despite genetic circuitry functioning predictably under favorable growth conditions in the lab, the same cannot be said when placed in more complex environments for eventual deployment. Here, we used a combination of evolutionary and rational engineering approaches to enhance E. coli for robust genetic circuit behavior in non-traditional growth environments. We utilized adaptive laboratory evolution (ALE) on E. coli MG1655 in a minimal media with a sole carbon source and saw improved dynamics of a population-lysis-based circuit after host evolution. Additionally, we improved lysis circuit tolerance of a more clinically relevant strain, the probiotic E. coli Nissle, using ALE of the host strain in a more complex media environment with added reactive oxygen species (ROS) stress. We observed improved recovery from circuit-induced lysis in the evolved Nissle strain, and in combination with directed mutagenesis, recovered circuit function in the complex media. These findings serve as a proof-of-concept that relevant strains of bacteria can be optimized for improved growth and performance in complex environments using ALE and that these changes can modify and improve synthetic gene circuit function for real-world applications.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know