PlumX Metrics
Embed PlumX Metrics

DPR-MEDIATED HO RESISTANCE CONTRIBUTES TO STREPTOCOCCI SURVIVAL IN A CYSTIC FIBROSIS AIRWAY MODEL SYSTEM

bioRxiv, ISSN: 2692-8205
2024
  • 0
    Citations
  • 0
    Usage
  • 0
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Article Description

The cystic fibrosis (CF) lung environment is conducive to the colonization of bacteria as polymicrobial biofilms, which are associated with poor clinical outcomes for persons with CF (pwCF). Streptococcus spp. is highly prevalent in the CF airway, but its role in the CF lung microbiome is poorly understood. Some studies have shown Streptococcus spp. to be associated with better clinical outcomes for pwCF, while others show that high abundance of Streptococcus spp. is correlated with exacerbations. Our lab previously reported a polymicrobial culture system consisting of four CF-relevant pathogens that can be used to study microbial behavior in a more clinically relevant setting. Here, we use this model system to identify genetic pathways that are important for Streptococcus sanguinis survival in the context of the polymicrobial community. We identified genes related to reactive oxygen species (ROS) as differentially expressed in S. sanguinis monoculture versus growth of this microbe in the mixed community. Genetic studies identified Dpr as important for S. sanguinis survival in the community. We show that Dpr, a DNA binding ferritin-like protein, and PerR, a peroxide-responsive transcriptional regulator of Dpr, are important for protecting S. sanguinis from phenazine-mediated toxicity in co-culture with P. aeruginosa and when exposed to ROS, both of which mimic the CF lung environment. Characterizing such interactions in a clinically relevant model system contributes to our understanding of microbial behavior in the context of polymicrobial biofilm infections.

Bibliographic Details

Rendi R. Rogers; Christopher A. Kesthely; Fabrice Jean-Pierre; Bassam El Hafi; George A. O'Toole

Cold Spring Harbor Laboratory

Biochemistry, Genetics and Molecular Biology; Agricultural and Biological Sciences; Immunology and Microbiology; Neuroscience; Pharmacology, Toxicology and Pharmaceutics

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know