PAM-free diagnostics with diverse type V CRISPR-Cas systems
medRxiv
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Type V CRISPR-Cas effectors have revolutionized molecular diagnostics by facilitating the detection of nucleic acid biomarkers. However, their dependence on the presence of protospacer adjacent motif (PAM) sites on the target double-stranded DNA (dsDNA) greatly limits their flexibility as diagnostic tools. Here we present a novel method named PICNIC that solves the PAM problem for CRISPR-based diagnostics with just a simple ~10-min modification to contemporary CRISPR-detection protocols. Our method involves the separation of dsDNA into individual single-stranded DNA (ssDNA) strands through a high-temperature and high-pH treatment. We then detect the released ssDNA strands with diverse Cas12 enzymes in a PAM-free manner. We show the utility of PICNIC by successfully applying it for PAM-free detection with three different subtypes of the Cas12 family- Cas12a, Cas12b, and Cas12i. Notably, by combining PICNIC with a truncated 15-nucleotide spacer containing crRNA, we demonstrate PAM-independent detection of clinically important single-nucleotide polymorphisms with CRISPR. We apply this approach to detect the presence of a drug-resistant variant of HIV-1, specifically the K103N mutant, that lacks a PAM site in the vicinity of the mutation. Additionally, we successfully translate our approach to clinical samples by detecting and genotyping HCV-1a and HCV-1b variants with 100% specificity at a PAM-less site within the HCV genome. In summary, PICNIC is a simple yet groundbreaking method that enhances the flexibility and precision of CRISPR-Cas12-based diagnostics by eliminating the restriction of the PAM sequence.
Bibliographic Details
Cold Spring Harbor Laboratory
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know