PlumX Metrics
Embed PlumX Metrics

Functional benefits of continuous vs. categorical listening strategies on the neural encoding and perception of noise-degraded speech

bioRxiv, ISSN: 2692-8205
2024
  • 0
    Citations
  • 0
    Usage
  • 0
    Captures
  • 1
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Mentions
    1
    • News Mentions
      1
      • News
        1

Most Recent News

Functional benefits of continuous vs. categorical listening strategies on the neural encoding and perception of noise-degraded speech

2024 JUN 05 (NewsRx) -- By a News Reporter-Staff News Editor at NewsRx Life Science Daily -- According to news reporting based on a preprint

Article Description

Acoustic information in speech changes continuously, yet listeners form discrete perceptual categories to ease the demands of perception. Being a more continuous/gradient as opposed to a discrete/categorical listener may be further advantageous for understanding speech in noise by increasing perceptual flexibility and resolving ambiguity. The degree to which a listener’s responses to a continuum of speech sounds are categorical versus continuous can be quantified using visual analog scaling (VAS) during speech labeling tasks. Here, we recorded event-related brain potentials (ERPs) to vowels along an acoustic-phonetic continuum (/u/to/a/) while listeners categorized phonemes in both clean and noise conditions. Behavior was assessed using standard two alternative forced choice (2AFC) and VAS paradigms to evaluate categorization under task structures that promote discrete (2AFC) vs. continuous (VAS) hearing, respectively. Behaviorally, identification curves were steeper under 2AFC vs. VAS categorization but were relatively immune to noise, suggesting robust access to abstract, phonetic categories even under signal degradation. Behavioral slopes were positively correlated with listeners’ QuickSIN scores, suggesting a behavioral advantage for speech in noise comprehension conferred by gradient listening strategy. At the neural level, electrode level data revealed P2 peak amplitudes of the ERPs were modulated by task and noise; responses were larger under VAS vs. 2AFC categorization and showed larger noise-related delay in latency in the VAS vs. 2AFC condition. More gradient responders also had smaller shifts in ERP latency with noise, suggesting their neural encoding of speech was more resilient to noise degradation. Interestingly, source-resolved ERPs showed that more gradient listening was also correlated with stronger neural responses in left superior temporal gyrus. Our results demonstrate that listening strategy (i.e., being a discrete vs. continuous listener) modulates the categorical organization of speech and behavioral success, with continuous/gradient listening being more advantageous to speech in noise perception.

Bibliographic Details

Rizzi, Rose; Bidelman, Gavin M

Cold Spring Harbor Laboratory

Biochemistry, Genetics and Molecular Biology; Agricultural and Biological Sciences; Immunology and Microbiology; Neuroscience; Pharmacology, Toxicology and Pharmaceutics

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know