Cliffy: robust 16S rRNA classification based on a compressed LCA index
bioRxiv, ISSN: 2692-8205
2024
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Mentions1
- News Mentions1
- News1
Most Recent News
Cliffy: robust 16S rRNA classification based on a compressed LCA index
2024 JUN 13 (NewsRx) -- By a News Reporter-Staff News Editor at NewsRx Life Science Daily -- According to news reporting based on a preprint
Article Description
Taxonomic sequence classification is a computational problem central to the study of metagenomics and evolution. Advances in compressed indexing with the r-index enable full-text pattern matching against large sequence collections. But the data structures that link pattern sequences to their clades of origin still do not scale well to large collections. Previous work proposed the document array profiles, which use O(rd) words of space where r is the number of maximal-equal letter runs in the Burrows-Wheeler transform and d is the number of distinct genomes. The linear dependence on d is limiting, since real taxonomies can easily contain 10,000s of leaves or more. We propose a method called cliff compression that reduces this size by a large factor, over 250x when indexing the SILVA 16S rRNA gene database. This method uses Θ(r log d) words of space in expectation under a random model we propose here. We implemented these ideas in an open source tool called Cliffy that performs efficient taxonomic classification of sequencing reads with respect to a compressed taxonomic index. When applied to simulated 16S rRNA reads, Cliffy’s read-level accuracy is higher than Kraken2’s by 11-18%. Clade abundances are also more accurately predicted by Cliffy compared to Kraken2 and Bracken. Overall, Cliffy is a fast and space-economical extension to compressed full-text indexes, enabling them to perform fast and accurate taxonomic classification queries.
Bibliographic Details
Cold Spring Harbor Laboratory
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know