Comparing statistical learning methods for complex trait prediction from gene expression
bioRxiv, ISSN: 2692-8205
2024
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Mentions1
- News Mentions1
- 1
Most Recent News
Comparing statistical learning methods for complex trait prediction from gene expression
2024 JUN 14 (NewsRx) -- By a News Reporter-Staff News Editor at NewsRx Drug Daily -- According to news reporting based on a preprint abstract,
Article Description
Accurate prediction of complex traits is an important task in quantitative genetics that has become increasingly relevant for personalized medicine. Genotypes have traditionally been used for trait prediction using a variety of methods such as mixed models, Bayesian methods, penalized regressions, dimension reductions, and machine learning methods. Recent studies have shown that gene expression levels can produce higher prediction accuracy than genotypes. However, only a few prediction methods were used in these studies. Thus, a comprehensive assessment of methods is needed to fully evaluate the potential of gene expression as a predictor of complex trait phenotypes. Here, we used data from the Drosophila Genetic Reference Panel (DGRP) to compare the ability of several existing statistical learning methods to predict starvation resistance from gene expression in the two sexes separately. The methods considered differ in assumptions about the distribution of gene effect sizes – ranging from models that assume that every gene affects the trait to more sparse models – and their ability to capture gene-gene interactions. We also used functional annotation (i.e., Gene Ontology (GO)) as an external source of biological information to inform prediction models. The results show that differences in prediction accuracy between methods exist, although they are generally not large. Methods performing variable selection gave higher accuracy in females while methods assuming a more polygenic architecture performed better in males. Incorporating GO annotations further improved prediction accuracy for a few GO terms of biological significance. Biological significance extended to the genes underlying highly predictive GO terms with different genes emerging between sexes. Notably, the Insulin-like Receptor (InR) was prevalent across methods and sexes. Our results confirmed the potential of transcriptomic prediction and highlighted the importance of selecting appropriate methods and strategies in order to achieve accurate predictions.
Bibliographic Details
Cold Spring Harbor Laboratory
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know