PlumX Metrics
Embed PlumX Metrics

RapA opens the RNA polymerase clamp to disrupt post-termination complexes and prevent cytotoxic R-loop formation

bioRxiv, ISSN: 2692-8205
2024
  • 0
    Citations
  • 0
    Usage
  • 0
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Article Description

Following transcript release during intrinsic termination, Escherichia coli RNA polymerase (RNAP) often remains associated with DNA in a post-termination complex (PTC). RNAPs in PTCs are removed from the DNA by the Swi2/Snf2 ATPase RapA. Here, we determined PTC structures on negatively-supercoiled DNA as well as of RapA engaged to dislodge the PTC. We found that core RNAP in the PTC can unwind DNA and initiate RNA synthesis but is prone to producing R-loops. We show that RapA helps control cytotoxic R-loop formation in vivo, likely by disrupting PTCs. Nucleotide binding to RapA triggers a conformational change that opens the RNAP clamp, allowing DNA in the RNAP cleft to reanneal and dissociate. We suggest that analagous ATPases acting on PTCs to suppress transcriptional noise and R-loop formation may be widespread. These results hold significance for the bacterial transcription cycle and highlight a role for RapA in maintaining genome stability.

Bibliographic Details

Joshua J. Brewer; Leandro Pimentel Marcelino; Seth A. Darst; Barbara Bosch; Elizabeth A. Campbell; Koe Inlow; Jeff Gelles; Rachel A. Mooney; Robert Landick; Paul Dominic B. Olinares; Brian T. Chait

Cold Spring Harbor Laboratory

Biochemistry, Genetics and Molecular Biology; Agricultural and Biological Sciences; Immunology and Microbiology; Neuroscience; Pharmacology, Toxicology and Pharmaceutics

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know