DORIAT:A BAYESIAN FRAMEWORK FOR INTERPRETING AND ANNOTATING DOCKING RUNS
bioRxiv, ISSN: 2692-8205
2024
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Mentions1
- News Mentions1
- News1
Most Recent News
DoRIAT: A Bayesian Framework For Interpreting And Annotating Docking Runs.
2024 DEC 20 (NewsRx) -- By a News Reporter-Staff News Editor at NewsRx Life Science Daily -- According to news reporting based on a preprint
Article Description
The advent of sequence-to-structure deep-learning models have transformed protein engineering landscape by providing an accurate and cost effective way to determine crystal structures. Despite their accuracy, deep-learning predictions tend to give limited insights around protein dynamics. To improve conformation exploration we have developed a machine learning pipeline that combines deep-learning predictions with molecular docking. In this report, we propose Docking Run Intepretation and Annotation Tool (DoRIAT). In contrast to frameworks that score models based on interface interactions, DoRIAT uses a set of parameters that summarize binding conformation. We use DoRIAT to score output from docking runs, identify complexes close to the native structure and create ensembles of models with similar binding conformations. Our results demonstrate that the single structural model DoRIAT selects to be the closest representation of the crystal structure lies within the top 10 of docked models, ranked by RMSD, in around 80% of cases.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know