Denaturants Alter the Flux through Multiple Pathways in the Folding of PDZ Domain
bioRxiv, ISSN: 2692-8205
2017
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Although we understand many aspects of how small proteins (number of residues less than about hundred) fold, it is a major challenge to understand how large proteins self-assemble. To partially overcome this challenge, we performed simulations using the Self-Organized Polymer model with Side Chains (SOP-SC) in guanidinium chloride (GdmCl), using the Molecular Transfer Model (MTM), to describe the folding of the 110-residue PDZ3 domain. The simulations reproduce the folding thermodynamics accurately including the melting temperature (T), the stability of the folded state with respect to the unfolded state. We show that the calculated dependence of ln k (k is the relaxation rate) has the characteristic Chevron shape. The slopes of the Chevron plots are in good agreement with experiments. We show that PDZ3 folds by four major pathways populating two metastable intermediates, in accord with the kinetic partitioning mechanism. The structure of one of the intermediates, populated after polypeptide chain collapse, is structurally similar to an equilibrium intermediate. Surprisingly, the connectivities between the intermediates and hence, the fluxes through the pathways depend on the concentration of GdmCl. The results are used to predict possible outcomes for unfolding of PDZ domain subject to mechanical forces. Our study demonstrates that, irrespective of the size or topology, simulations based on MTM and SOP-SC offer a framework for describing the folding of proteins, mimicking precisely the conditions used in experiments.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know