PlumX Metrics
Embed PlumX Metrics

Coherent representations of subjective spatial position in primary visual cortex and hippocampus

bioRxiv, ISSN: 2692-8205
2017
  • 1
    Citations
  • 0
    Usage
  • 0
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    1
    • Citation Indexes
      1
      • CrossRef
        1

Article Description

A major role of vision is to guide navigation, and navigation is strongly driven by vision. Indeed, the brain’s visual and navigational systems are known to interact, and signals related to position in the environment have been suggested to appear as early as in visual cortex. To establish the nature of these signals we recorded in primary visual cortex (V1) and in the CA1 region of the hippocampus while mice traversed a corridor in virtual reality. The corridor contained identical visual landmarks in two positions, so that a purely visual neuron would respond similarly in those positions. Most V1 neurons, however, responded solely or more strongly to the landmarks in one position. This modulation of visual responses by spatial location was not explained by factors such as running speed. To assess whether the modulation is related to navigational signals and to the animal’s subjective estimate of position, we trained the mice to lick for a water reward upon reaching a reward zone in the corridor. Neuronal populations in both CA1 and V1 encoded the animal’s position along the corridor, and the errors in their representations were correlated. Moreover, both representations reflected the animal’s subjective estimate of position, inferred from the animal’s licks, better than its actual position. Indeed, when animals licked in a given location – whether correct or incorrect – neural populations in both V1 and CA1 placed the animal in the reward zone. We conclude that visual responses in V1 are tightly controlled by navigational signals, which are coherent with those encoded in hippocampus, and reflect the animal’s subjective position in the environment. The presence of such navigational signals as early as in a primary sensory area suggests that these signals permeate sensory processing in the cortex.

Bibliographic Details

Aman B. Saleem; E. Mika Diamanti; Julien Fournier; Matteo Carandini; Kenneth D. Harris

Cold Spring Harbor Laboratory

Biochemistry, Genetics and Molecular Biology; Agricultural and Biological Sciences; Immunology and Microbiology; Neuroscience; Pharmacology, Toxicology and Pharmaceutics

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know