High-order interactions dominate the functional landscape of microbial consortia
bioRxiv, ISSN: 2692-8205
2018
- 15Citations
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations15
- Citation Indexes15
- CrossRef15
Article Description
Understanding the link between community composition and function is a major challenge in microbial ecology, with implications for the management of natural microbiomes and the design of synthetic consortia. For this purpose, it is critical to understand the extent to which community functions and properties can be predicted from species traits and what role is played by complex interactions. Inspired by the study of complex genetic interactions and fitness landscapes, here we have examined how the amylolytic function of combinatorial assemblages of seven starch-degrading soil bacteria depends on the functional contributions from each species and their interactions. Filtering our experimental results through the theory of enzyme kinetics, we show that high-order functional interactions dominate the amylolytic rate of our consortia, even though this function is biochemically simple, redundantly distributed in the community, and additive in the absence of inter-species interactions. As the community grows in size, the contribution of high-order functional interactions grows too, making the community function increasingly unpredictable. We can explain the prevalence of high order effects and their sign from the redundancy of ecological interactions in the network, in particular from redundant facilitation towards a high-performing community member. Our results suggest that even simple functions can be dominated by complex interactions, posing challenges for the predictability and bottom-up engineering of ecosystem function in complex multi-species communities.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know