Comparative genomic analysis revealed rapid differentiation in the pathogenicity-related gene repertoires between Pyricularia oryzae and Pyricularia penniseti isolated from a Pennisetum grass
bioRxiv, ISSN: 2692-8205
2018
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Backgrounds Pyricularia is a multispecies complex that could infect and cause severe blast disease on diverse hosts, including rice, wheat and many other grasses. Although the genome size of this fungal complex is small [~40 Mbp for Pyricularia oryzae (syn. Magnaporthe oryzae), and ~45 Mbp for P. grisea], the genome plasticity allows the fungus to jump and adapt to new hosts. Therefore, deciphering the genome basis of individual species could facilitate the evolutionary and genetic study of this fungus. However, except for the P. oryzae subgroup, many other species isolated from diverse hosts, such as the Pennisetum grasses, remain largely uncovered genetically. Results Here, we report the genome sequence of a pyriform-shaped fungal strain P. penniseti P1609 isolated from a Pennisetum grass (JUJUNCAO) using PacBio SMRT sequencing technology. We performed a phylogenomic analysis of 28 Magnaporthales species and 5 non-Magnaporthales species and addressed P1609 into a Pyricularia subclade that is distant from P. oryzae. Comparative genomic analysis revealed that the pathogenicity-related gene repertoires were fairly different between P1609 and the P. oryzae strain 70-15, including the cloned avirulence genes, other putative secreted proteins, as well as some other predicted Pathogen-Host Interaction (PHI) genes. Genomic sequence comparison also identified many genomic rearrangements. Conclusion Taken together, our results suggested that the genomic sequence of the P. penniseti P1609 could be a useful resource for the genetic study of the Pennisetum-infecting Pyricularia species.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know