PlumX Metrics
Embed PlumX Metrics

A central control circuit for encoding perceived food value

bioRxiv, ISSN: 2692-8205
2018
  • 0
    Citations
  • 0
    Usage
  • 0
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Article Description

Hunger state can substantially alter the perceived value of a stimulus, even to the extent that the same sensory cue can trigger antagonistic behaviors. How the nervous system uses such graded perceptual shifts to select between opposed motor patterns remains enigmatic. Here we challenged food-deprived and satiated Lymnaea to choose between two mutually exclusive behaviors, ingestion or egestion, produced by the same feeding central pattern generator. Decoding the underlying neural circuit reveals that the activity of central dopaminergic interneurons defines hunger state and drives network reconfiguration, biasing satiated animals towards the rejection of stimuli deemed palatable by food-deprived ones. By blocking the action of these neurons, satiated animals can be reconfigured to exhibit a hungry animal phenotype. This centralized mechanism occurs in the complete absence of sensory retuning and generalizes across different sensory modalities, allowing food-deprived animals to increase their perception of food value in a stimulus-independent manner to maximize potential calorific intake.

Bibliographic Details

Crossley, Michael; Staras, Kevin; Kemenes, György

Cold Spring Harbor Laboratory

Biochemistry, Genetics and Molecular Biology; Agricultural and Biological Sciences; Immunology and Microbiology; Neuroscience; Pharmacology, Toxicology and Pharmaceutics

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know