Transitions in paternal dominance regulate offspring growth and metabolic transcription
bioRxiv, ISSN: 2692-8205
2018
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Parental effects are an important source of adaptive traits. By contrast, parental effects failing to regulate offspring phenotype to fit current conditions could be deleterious. Although adaptive parental responses to single cues have been identified, we lack an understanding of the reversibility of parental effects across breeding cycles in a fluctuating environment. Social status of parents can occasionally fluctuate and, in turn, influence high-fitness pathways available to offspring. We show that social competition status results in robust parental effects on growth in mice. Dominant males produce faster growing offspring because of status related cues, not genetic associations. The timing, effect-size, and sex-specificity of this paternal effect are modulated by maternal experience. We experimentally demonstrate that status-ascending males produce heavier sons than before, and status-descending males produce lighter sons than before. Paternal status predicts genome-wide transcription in the liver, including transcriptional networks controlling xenobiotic and fatty acid metabolism, and oxidative phosphorylation. Our study demonstrates that paternal social status reversibly conditions offspring growth in naturalistic environments.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know