PlumX Metrics
Embed PlumX Metrics

Basal extrusion drives cell invasion and mechanical stripping of E-cadherin

bioRxiv, ISSN: 2692-8205
2018
  • 0
    Citations
  • 0
    Usage
  • 0
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Article Description

Metastasis is the predominant reason that patients succumb to cancer, yet the mechanisms that drive initial tumor cell invasion are poorly understood. We previously discovered that crowding-induced apical extrusion drives most epithelial cell death, critical to maintaining constant cell densities. Oncogenic mutations can disrupt apical cell extrusion, instead causing masses to form and aberrant basal extrusion. Using transparent zebrafish epidermis to model simple epithelia, we can image invasion events live at high resolution. We find that KRas/p53-transformed cells form masses and, at completely independent sites, invade by basal extrusion. Basal extrusion also causes invading cells to simultaneously mechanically shed their entire apical membranes and E-cadherin. Once cells invade the underlying tissue, they migrate throughout the body, divide, enter the bloodstream, and become different cell types. KRas-transformation makes cells intrinsically invasive by increasing basal extrusion rates; collaborating mutations in p53 allow disseminated cells to survive at distant sites.

Bibliographic Details

Fadul, John; Slattum, Gloria M.; Redd, Nadja M.; Jin, Mauricio Franco; Redd, Michael J.; Daetwyler, Stephan; Hedeen, Danielle; Huisken, Jan; Rosenblatt, Jody

Cold Spring Harbor Laboratory

Biochemistry, Genetics and Molecular Biology; Agricultural and Biological Sciences; Immunology and Microbiology; Neuroscience; Pharmacology, Toxicology and Pharmaceutics

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know