Basal extrusion drives cell invasion and mechanical stripping of E-cadherin
bioRxiv, ISSN: 2692-8205
2018
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Metastasis is the predominant reason that patients succumb to cancer, yet the mechanisms that drive initial tumor cell invasion are poorly understood. We previously discovered that crowding-induced apical extrusion drives most epithelial cell death, critical to maintaining constant cell densities. Oncogenic mutations can disrupt apical cell extrusion, instead causing masses to form and aberrant basal extrusion. Using transparent zebrafish epidermis to model simple epithelia, we can image invasion events live at high resolution. We find that KRas/p53-transformed cells form masses and, at completely independent sites, invade by basal extrusion. Basal extrusion also causes invading cells to simultaneously mechanically shed their entire apical membranes and E-cadherin. Once cells invade the underlying tissue, they migrate throughout the body, divide, enter the bloodstream, and become different cell types. KRas-transformation makes cells intrinsically invasive by increasing basal extrusion rates; collaborating mutations in p53 allow disseminated cells to survive at distant sites.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know